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Abstract 

The influence of the gravitational field upon the direction of polarization of electro- 
magnetic radiation is generally discussed and for the special case of the gravitational 
field of a rotating homogeneous ring quantitatively calculated in linear approximation. 

The existing proofs of Einstein's general relativistic theory of gravitation 
by the use of electromagnetic radiation are based on the measurement of 
frequency-shifts of spectral lines and on the determination of the deflection 
of light beams or of the retardation of radar signals in the gravitational 
field of the sun. These tests result exclusively from the geometrical optics, 
because for their derivation only the fact of light propagation along geodesic 
null-lines of the space-time is needed. 

In this connection the question arises if also properties of the wave optics 
are suitable for testing Einstein's theory of gravitation, for instance the 
polarizability of electromagnetic radiation. Indeed, such gravitational 
influences upon the polarization of light are to be expected: In view of the 
Thirring-effect (Thirring, 1918) the plane of polarization of linearly polarized 
light should be twisted, when the light beam passes through the gravita- 
tional field of a rotating body (dragging effect according to Mach's principle), 
analogously to the magnetic Faraday-effect in dispersing media. 

In the following, this 'gravitational Faraday-effect' will be discussed 
explicitly. At first we determine the general behaviour of the direction of 
polarization along the light beam, and then we calculate the rotation of the 
plane of polarization in the special case of the gravitational field of a 
rotating ring. Certainly, the order of magnitude of the rotation angle will 
not be sufficient for its detection in a terrestial experiment; however, it 
seems to be not excluded that this effect has a non-negligible importance 
in cosmic dimensions. 
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1. Definition of the Polarization 

We start from the antisymmetric field-tensor F~v of electromagnetic 
radiation in form of  a light-like bivector (comp. e.g. Kundt, 1961) 

F ~ = b u k v - b ~ k  u (1.1) 

with? 

k~k ~ = O, buk" = O, bub" < 0 (1.1a) 

wherein k s is the light-like wave vector. From (1.1) the well-known proper- 
ties of electromagnetic radiation fields~ 

F ,  k~=O, F u . b . ~ k u . F .  b~=O, Su ~kukv  (1.2) 

follow and inversely, in which Su~ represents the energy tensor of the 
radiation field. 

Furthermore, we introduce a time-like normalized vector field u s 
(u, uU= 1), the trajectories of which we interpret as the world-lines of the 
physical observers (observer field) measuring the polarization of the 
radiation (see, for example, Dehnen, 1970). Then the electric and magnetic 
field-vector observed by the observer field u s is given by 

Eu= Fu~u~= buk~u~- k.b~u ~ (1.3) 

and 
H s =F*,u v 

respectively, with (comp. (1.2)) 

EsHS=O' EskS=O' Huk"=O' Euu"=O (1.3a) 
H.us=O, EsEU <O, H . H s  <O 

Because of these relations we can restrict ourselves to the discussion of the 
behaviour of the electric field-vector E s for analysing the polarization state. 
Accordingly, we substitute with the use of (1.3) in (1.1) b s by E u and get 

Fs = E k~ - E v  k.  .k~u~ k~u~ (1.4) 

Since only the direction of E u characterizes the polarization state, it is 
appropriate to decompose E.  into the absolute value E and the unit vector 
a. 

E u = Ea s, aua s = -1  (1.4a) 

Herein E represents the amplitude and a,  the polarization-vector of the 
electromagnetic wave. 

t We use the following signature of the metric: - ,  - ,  -,  +. 
;~ F*, is the dual tensor of F.~. 
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2. Propagat ion o f  Polarization and Ampl i tude  

Setting (1.4) and (1.4a) into the vacuum MaxweU-equations? 

F,V,,v = 0 (2.1a) 
* y  

F ,  II v = 0 (2. lb) 

one gets the differential equations for the  f ree  propagation of the polarized 
electromagnetic wave. In this way it follows with the abbreviation 

k,  
l. = k ~  (l. u" = 1) (2.2) 

after a simple calculation from (2. la) 

Etvl  v + E ( l V ~  + lut~va"a ~) = 0 (2.3a) 

a . l t ~ l "  - l~ii~a~a~a. + (u.lIB - uell~)a~lal~ - luwi~a ~ = 0 (2.3b) 

and from (2.1b) 

EI~I" - E(luk~aUa ~ + u . ~ l " l O  = 0 (2.4a) 

a.~vl  ~ + l~l~a~ aa a .  + u~ll~a~ la l. - l~aa~ua l.  + l~;~.a ~ = 0 (2.4b) 

l. ii v l v = -u~ lie l~ l~ l. (2.4c) 

Herein the last equation (2.4c) means the propagation of  the radiation 
along geodesic null-lines in non-affine parametric representation. Further- 
more, the addition of (2.3a) and (2.4a) results in the propagation equation 
for the amplitude 

El.  l ~ + �89  ,, ~ - u. ~, ~ l" l0  = 0 (2.5) 

whereas the addition of  (2.3b) and (2.4b) gives: 

a~,Hvl" + u~,~a~lB l.  + �89 - l.r,v)a v - (lz,,~ - l~;,;.)a~u~ l~,] = 0 (2.6) 

The projections of the left side of the last equation upon the wave vector 
I. and upon the vector field u. vanish identically in view of  (1.3a) and 
(2.4c). Therefore, the only non-trivial information from (2.6) is obtained by 
projection upon the two-dimensional space-like screen-plane of the 
observers orthogonally oriented to the light rays; this projection will be 
realized by the symmetric projection tensor (see, for example, Jordan 
et aL, 1961) 

/,,~ = g,~ + l,l~ - luu~ - l~u,, (2.7) 

with the properties 

h . v h ~ = h u a ,  h . " = 2 ,  h~vlv=O,  h . vu~=O ,  h~,~a~=a. (2.7a) 

t i]v signifies the covariant and Iv the ordinary derivative with respect to the coordinate 
X v" 
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where g,~ is the metric tensor of the space-time. Thus the application of 
(2.7) to (2.6) results in the following reduced equation of propagation for 
the direction of polarization 

1 as ,r~ l~ h"~ + ~(l~,, ~ - lu ,, ~) a ~ h"~ = 0 (2.8) 

Finally, the only non-trivial information obtained by subtraction of 
(2.3a) and (2.4a) or of (2.3b) and (2.4b) is 

[(l,,~ + l~r,) - (P,,~ + u,,,z l~ lZ)h~]a"  a ~ = 0 (2.9) 

With respect to the arbitrary orientation of a s in the screen-plane, equation 
(2.9) is, in view of (2.7a), equivalent to 

[l~ ~r~ + l~,,, - (l ' , , ,  + u~,~l"lZ)  hu~]hU~h~ a = 0 (2.10) 

For the following it is useful to substitute in the propagation equations 
(2.4c), (2.5), (2.8) and (2.10) the wave vector l u again by k~ according to 
(2.2); in this way we get successively: 

kufl~k ~ = 0  (2.11) 

k u k ~ 
EI~ k ~ = - � 8 9  ~ , ~ + Eu~, ~ k~ u ~ (2.12) 

1 a~ ii ~ k~ h ' .  = ~ ( k ~  JE ~ - k~  , . )  a ~ h ' .  ( 2 . 1 3 )  

( k .  ,,~ + It . , , .  - k ' , ,  o h.~) h"~ h ~  = 0 (2.14)  

Equation (2.11) means the propagation of the radiation along geodesic 
null-lines, now in affine parametric representation [cf. equation (2.4c)]. 
The equations (2.12) and (2.13) describe the propagation of the amplitude 
E and the polarization a,, according to which in the first case especially the 
expansion (divergence) and in the second one the rotation of the light rays 
has a considerable influence upon the behaviour of E and a, respectively. 
Finally, equation (2.14) represents the well-known fact that the rays of 
electromagnetic radiation show no shearing. 

Accordingly for the discussion of the gravitational Faraday-effect it is 
necessary to solve at first the differential equation (2.11) for the geodesic 
null-lines and then to determine the behaviour of the polarization a,  along 
the rays by integration of equation (2.13). Because in case of monochromatic 
radiation k , u ' =  v is the frequency observed by the observers u, and 
evidently v does not appear in (2.11) and (2.13), in contrast to (2.12), the 
behaviour of the polarization is independent of the frequency of the 
radiation. Thus the gravitational Faraday-effect is f r ee  of dispersion in 
opposition to the magnetic one. 

3. Gravitational Field o f  a Uniformly Rotating Homogeneous Ring in Linear 
Approximation 

In view of Mach's principle [cf. also equation (2.13)], a rotation of the 
plane of polarization is to be expected, when linearly polarized radiation 
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passes through the gravitational field of  a rotating body. For detecting this 
effect unambiguously 'scattering experiments' are suitable, in which the 
radiation coming from the flat space-like infinity runs out to the flat infinity 
after passing through the gravitational field of the rotating body. A simple 
experiment of  this kind is the propagation of  linearly polarized radiation 
along the axis of a rotating thin ring (see Fig. 1). 

~Z 

Figure 1.--Propagation of a linearly polarized electromagnetic wave along the axis of a 
rotating thin ring. A rotation of the plane of polarization is to be expected in the direction 
of the rotation of the ring. 

Therefore, we determine in the following at first the gravitational field 
of a rotating homogeneous thin ring in the neighbourhood of  its axis in 
linear approximation. In Cartesian coordinates the energy-momentum- 
stress tensor of an homogeneous ring rotating uniformly in the x, y-plane 
around the z-axis is given by (Frehland, 1971) 

i 0 0 +Po ccoy ) 
T.~ = 0 0 -Po ccox 

o o 0 (3.1) 

+pOCcoY --poCcoX 0 floC2( 1 + f12) 
with 

coR 
x = Rcoscp, y = Rsin~p, f l -  (3.1a) 

c 

wherein r is the angle of  rotation around the z-axis, co = ~p the angular- 
velocity, R the radius and Po the (constant) rest mass density of  the ring. 
After the expansion of the metric of  the space-time 

g.v = quv + %,~ + . . . ,  -1  0 
7u~ = r - �89 t/.v = 0 -1  (3.2) 

+1 
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the integration of  the linearized field equations of  gravitation 

r = -2~cT~v (3.3) 

(x = 8rcG/c 4, G Newton's gravitational constant) yields with the use of  
(3.1) 

~c f PoY' dz' O,x=- co_ 
xc f pox' dz' 

~'4,  = ~ co _ [r - r ' l  ( 3 . 4 )  

tcc 2 ( po(1 + f l 2 ) . ,  
a t  

r = 0 otherwise 

Expanding the integrands in (3.4) for the neighbourhood of  the z-axis 
( x / R ~  1,y/R ~ 1) we obtain by calculation of  the integrals under the 
restriction to low velocities (linearized in fl): 

~cc 2 M ( I ( R 2 -  2zZ)(x2 + y 2) } 
r = - 2rc a/(R 2 + z 2) 1 + 4 (R 2 + zZ)2 I- O((x/R) 3, (y/R) 3) 

Y_ + r = - -  ~ MR2 co (R 2 + z2)a/z O((x/R) a, (y/R) 3) 

l r  2 X 

r = ~ MR co (R 2 ~ 2 ) 3 / 2  "-1- O((x/R) a, (Y/R) 3) (3.5) 

r  = 0 otherwise 

wherein M is the total mass of the ring. Herewith we find according to (3.2) 
the following non-vanishing deviations from the metric of  the flat space- 
time in the neighbourhood of  the rotation axis (z-axis) of  the ring 

t~C 2 M {l q l ( R 2 -  2z2)(xZ + y2) } 
]/11 = 722 : 733 = ~44 : - -  4Z~ "v/(R 2 + Z 2) 4 ( R  2 + z2) 2 + " "  

~c 2 Y 
~74~ = --~-~ MR co (R z + z2)a/2 + - . .  (3.6) 

~ay = ~-~ MR2 co , ..z x 
,trc t~  + z2) 3/2 + " "  

Evidently only the components Y4,, and 74r result from the rotation co; 
the remaining components of  y, ,  describe the static gravitational field of  
the mass M of  the ring near the z-axis. 

4. Integration of  the Propagation Equations 
For the propagation of an electromagnetic wave along the rotation 

axis of  the ring (z-axis) the integration of  the differential equation for the 
geodesic null-lines (2.11) gives under the initial condition at z = - ~  

0 
k" = (0,0, 1, 1) (4.1) 
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0 

a s = 61 u (4.5c) 

which means linear polarization of the radiation in the direction of the 
x-axis. Then the equation (4.4) results after calculation of the Christoffel- 
symbols F ~  according to (3.6) in: 

dal 1 da2 ~ M R  z w(R z + z2) -3/z (4.6) 
-~z = ~?1~ Iz, dz ,~7~ 

In view of  (3.6) and (4.5c) we find by integration of  (4.6) along the z-axis 
from z = -oo up to z = +co : 

a l ( z = + ~ o )  = -1  
t~c (4.7) 

a2(z=+ | = - ~ Moo 

The comparison of  (4.5c) and (4.7) shows that as a consequence of 
passing through the gravitational field of the rotating ring, the polarization 
plane of  the radiation is swivelled through the (in general small) angle 

tr 
6 = ~ Moo (4.8) 

within the approximations mentioned above 

1r 2 _ X Z  ~C 2 _ yz  
k l  = - ~  M (R 2 + z2)3/2, k2 = - ~ M (R 2 ~-z2)gT~, 

~:c z M [l q l ( R 2 -  2zZ)(xZ + yZ ) ]_  l (4.2) 
k3 = - - - ~  ,v/(R 2 + zZ ) 4 (R 2 + z2) 2 

k4=  1 

Herewith 
k . l l v  - -  k ,  ll s - 0 ( 4 . 3 )  

is valid (in the neighbourhood of  the z-axis) and the propagation equation 
for the polarization a s (2.13) takes the form 

0 0 0 0 0 

= F~z a,, k h s a~o,k,,h~,s , z �9 (4.4) 

Within the linear approximation the quantities with the index null are to 
be considered in the lowest order undisturbed by the gravitational field. 

Choosing the observer field u s at rest relatively to the inertial system 
(fixed stars) the following relations hold 

0 

u s = 54 s (4.5a) 

and with regard to (2.2), (2.7) and (4.1): 
0 0 0 

hll = h22 = 1, h u, = 0 otherwise (4.5b) 

assume as initial condition for the polarization at 
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in the direction of  the rotation of  the ring. This is in agreement with Mach's 
principle, according to which just such a dragging effect should exist. 
From here it follows immediately that the rotation of  the plane of  
polarization does not be cancelled when the radiation passes subsequently 
through the gravitational field in opposite direction, for instance as a 
result o f  reflection z = + ~,  but it will be doubled analogously to the 
situation in case of  the magnetic Faraday-effect. 

With the substitution M = 2no-R, wherein o- is the linear mass-density 
of  the ring, equation (4.8) becomes (in CGS-units): 

6 = xc 2/~a = 1.8.10 -27 flo" (4.9) 

The smallness of the factor in (4.9) means that an experimental proof  of  
(4.9) in a terrestrial laboratory seems to be hopeless. However, it cannot be 
excluded that the gravitational Faraday-effect has a non-negligible impor- 
tance in cosmic dimensions, where the rotating masses M [cf. equation 
(4.8)] could become large enough; but in this case the independence of  
the rotation angle 6 on the frequency v of the radiation (cf. Section 2) 
should complicate at least its experimental detection. 
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